
Chapter 6

Java’s Building Blocks
In This Chapter
▶ Assigning values to things
▶ Making things store certain types of values
▶ Applying operators to get new values

I 
’ve driven cars in many cities, and I’m ready to present my candid 
reviews:

 ✓ Driving in New York City is a one-sided endeavor. A New York City driver 
avoids hitting another car but doesn’t avoid being hit by another car. 
In the same way, New York pedestrians do nothing to avoid being hit. 
Racing into the path of an oncoming vehicle is commonplace. Anyone 
who doesn’t behave this way is either a New Jersey driver or a tourist 
from the Midwest. In New York City, safety depends entirely on the car 
that’s moving toward a potential target.

 ✓ A driver in certain parts of California will stop on a dime for a pedestrian 
who’s about to jaywalk. Some drivers stop even before the pedestrian is 
aware of any intention to jaywalk.

 ✓ Boston’s streets are curvy and irregular, and accurate street signs are 
rare. Road maps are outdated because of construction and other  
contingencies. So driving in Boston is highly problematic. You can’t 
find your way around Boston unless you already know your way around 
Boston, and you don’t know your way around Boston unless you’ve 
already driven around Boston. Needless to say, I can’t drive in Boston.

 ✓ London is quite crowded, but the drivers are polite (to foreigners, at 
least). Several years ago, I caused three car accidents in one week on the 
streets of London. And after each accident, the driver of the other car 
apologized to me!

I was particularly touched when a London cabby expressed regret that an 
accident (admittedly, my fault) might stain his driving record. Apparently, 
the rules for London cabbies are quite strict.



138 Part II: Writing Your Own Java Programs 

This brings me to the subject of the level of training required to drive a  
taxicab in London. The cabbies start their careers by memorizing the London 
street map. The map has over 25,000 streets, and the layout has no built-in 
clues. Rectangular grids aren’t the norm, and numbered streets are quite 
uncommon. Learning all the street names takes several years, and the cabbies 
must pass a test in order to become certified drivers.

This incredibly circuitous discussion about drivers, streets, and my tendency 
to cause accidents leads me to the major point of this section: Java’s built-in 
types are easy to learn. In contrast to London’s 25,000 streets, and the  
periodic table’s 100-some elements, Java has only eight built-in types. They’re 
Java’s primitive types, and this chapter describes them all.

Info Is as Info Does
“Reality! To Sancho, an inn; to Don Quixote, a castle; to someone else, 
whatever!”

—Miguel de Cervantes, as updated for “Man of La Mancha”

When you think a computer is storing the letter J, the computer is, in reality, 
storing 01001010. For the letter K, the computer stores 01001011. Everything 
inside the computer is a sequence of 0s and 1s. As every computer geek 
knows, a 0 or 1 is a bit.

As it turns out, the sequence 01001010, which stands for the letter J, 
can also stand for the number 74. The same sequence can also stand for 
1.0369608636003646 × 10–43. In fact, if the bits are interpreted as screen pixels, 
the same sequence can be used to represent the dots shown in Figure 6-1. 
The meaning of 01001010 depends on the way the software interprets this 
sequence of 0s and 1s.

 

Figure 6-1: 
An extreme 
close-up of 
eight black-

and-white 
screen 
pixels.

 



139 Chapter 6: Java’s Building Blocks

So how do you tell the computer what 01001010 stands for? The answer is in 
the concept of type.

The type of a variable is the range of values that the variable is permitted to 
store. Listing 6-1 illustrates this idea.

Listing 6-1: Goofing Around with Java Types
package com.allmycode.demos;

import javax.swing.JOptionPane;

public class TypeDemo1 {

  public static void main(String[] args) {
    int anInteger = 74;
    char aCharacter = 74;
    JOptionPane.showMessageDialog(null, anInteger,
        “An int variable”, JOptionPane.PLAIN_MESSAGE);
    JOptionPane.showMessageDialog(null, aCharacter,
        “A char variable”, JOptionPane.PLAIN_MESSAGE);
  }

}

A run of the code in Listing 6-1 looks like the displays in Figures 6-2 and 6-3.

 

Figure 6-2: 
Displaying 

01001010 
as an int 

value.
 

 

Figure 6-3: 
Displaying 

01001010 
as a char 

value.
 



140 Part II: Writing Your Own Java Programs 

In Figure 6-2, the computer interprets 01001010 as a whole number. But in 
Figure 6-3, the computer interprets the same 01001010 bits as the representa-
tion of the character J. The difference stems from the two type declarations at 
the start of the main method in Listing 6-1:

    int anInteger = 74;
    char aCharacter = 74;

Each of these declarations consists of three parts: a variable name, a type 
name, and an initialization. The next few sections describe these parts.

Variable names
The identifiers anInteger and aCharacter in Listing 6-1 are variable 
names, or simply variables. A variable name is a nickname for a value (like 
the value 74).

I made up both variable names for the example in Listing 6-1, and I intentionally 
made up informative variable names. Instead of anInteger and aCharacter 
in Listing 6-1, I could have chosen flower and goose. But I use anInteger 
and aCharacter because informative names help other people read and 
understand my code. (In fact, informative names help me read and understand 
my own code!)

Like most of the names in a Java program, variable names can’t have blank 
spaces. The only allowable punctuation symbol is the underscore character 
(_). Finally, you can’t start a variable’s name with a digit. For example, you 
can name your variable close2Call, but you can’t name it 2Close2Call.

 If you want to look like a seasoned Java programmer, start every variable 
name with a lowercase letter, and use uppercase letters to separate words 
within the name. For example, numberOfBunnies starts with a lowercase 
letter and separates words by using the uppercase letters O and B. This mixing 
of upper- and lowercase letters is called camel case because of its resemblance 
to a camel’s humps.

Type names
In Listing 6-1, the words int and char are type names. The word int (in the 
first type declaration) tells the computer to interpret whatever value an 
Integer has as a “whole number” value (a value with no digits to the right of 
the decimal point). And the word char (in the second type declaration) tells 
the computer to interpret whatever value aCharacter has as a  



141 Chapter 6: Java’s Building Blocks

character value (a letter, a punctuation symbol, or maybe even a single digit). 
So in Listing 6-1, in the first call to showMessageDialog, when I display 
the value of anInteger, the computer displays the number 74. And in the 
second call to showMessageDialog, when I display the value of aCharacter, 
the computer displays the letter J.

 In Listing 6-1, the words int and char tell the computer what types my  
variable names have. The names anInteger and aCharacter remind me, 
the programmer, what kinds of values these variables have, but the names 
anInteger and aCharacter provide no type information to the computer. 
The declarations int rocky = 74 and char bullwinkle = 74 would  
be fine, as long as I used the variable names rocky and bullwinkle  
consistently throughout Listing 6-1.

Assignments and initializations
Both type declarations in Listing 6-1 end with an initialization. As the name 
suggests, an initialization sets a variable to its initial value. In both declarations, I 
initialize the variable to the value 74.

You can create a type declaration without an initialization. For example, I 
can change the code in Listing 6-1 so that the first four lines inside the main 
method look like this:

int anInteger;
char aCharacter;
anInteger = 74;
aCharacter = 74;

A line like anInteger = 74 is an assignment. An assignment changes a 
variable’s value. An assignment isn’t part of a type declaration. Instead, an 
assignment is separate from its type declaration (maybe many lines after the 
type declaration).

You can initialize a variable with one value and then, in an assignment  
statement, change the variable’s value.

int year = 2008;
System.out.println(year);
System.out.println(“Global financial crisis”);
year = 2009;
System.out.println(year);
System.out.println(“Obama elected US president”);
year = 2010;
System.out.println(year);
System.out.println(“Oil spill in the Gulf of Mexico”);



142 Part II: Writing Your Own Java Programs 

Sometimes, you need a name for a value that doesn’t change during the  
program’s run. In such situations, the keyword final signals a variable 
whose value can’t be reassigned.

final int NUMBER_OF_PLANETS = 9;

A final variable is a variable whose value doesn’t vary. (As far as I know, no 
one’s ever seriously suggested calling these things invariables.)

You can initialize a final variable’s value, but after the initialization, you 
can’t change the variable’s value with an assignment statement. In other 
words, after you declare final int NUMBER_OF_PLANETS = 9, this 
assignment statement isn’t legal:

NUMBER_OF_PLANETS = 8;

If Pluto is no longer a planet, you can’t accommodate the change without 
changing the 9 in the final int NUMBER_OF_PLANETS = 9 declaration.

In Java, the word final is one of Java’s modifiers. A modifier is like an 
adjective in English. A modifier causes a slight change in the meaning 
of a declaration. For example, in this section, the word final modifies 
the NUMBER_OF_PLANETS declaration, making the value of NUMBER_OF_
PLANETS unchangeable.

 For more information about Java’s modifiers, see Chapters 9 and 10.

As a rule, you use final variables to give friendly names to values that never 
(or rarely) change. For example, in a Java program, 6.626068e-34 stands 
for 6.626068 × 10–34, which is the same as this:

0.0000000000000000000000000000000006626068

In a quantum physics application, you probably don’t want to retype the 
number 6.626068e-34 several times in your code. (You can type the 
number wrong even when you copy-and-paste.) To keep errors from creeping 
into your code, you declare

final double PLANCK_CONSTANT = 6.626068e-34;

From that point on, rather than typing 6.626068e-34 multiple times in your 
code, you can type only the name PLANCK_CONSTANT when needed.

 You can use lowercase letters in any variable, including final variables. But 
Java programmers seldom write code this way. To keep from looking like a 
complete newbie, use only uppercase letters and digits in a final variable’s 
name. Use underscores to separate words.



143 Chapter 6: Java’s Building Blocks

 A loophole in the Java language specification allows you, under certain  
circumstances, to use an assignment statement to give a variable its initial 
value. For a variable, such as amount, declared inside of a method, you can 
write final int amount; on one line, and then amount = 0; on another 
line. Want my advice? Ignore this loophole. Don’t even read this Technical 
Stuff icon!

Expressions and literals
In a computer program, an expression is a bunch of text that has a value. 
For example, in Listing 6-1, the number 74 and the words anInteger and 
aCharacter both have values. If I use the name anInteger in ten different 
places in my Java program, then I have ten expressions, and each expression 
has a value. If I decide to type anInteger + 17 somewhere in my program, 
then anInteger + 17 is an expression because anInteger + 17 has a 
value. Listing 6-1 has a bunch of expressions other than the 74, anInteger 
and aCharacter expressions, but I’ll let you fish for all the expressions on 
your own.

A literal is a kind of expression whose value doesn’t change from one Java 
program to another. For example, the expression 74 means “the numeric 
value 74” in every Java program. Likewise, the expression ‘J’ means “the 
tenth uppercase letter in the Roman alphabet” in every Java program, and 
the word true means “the opposite of false” in every Java program. The 
expressions true, 74, and ‘J’ are literals. Similarly, the text “An int 
variable” in Listing 6-1 is a literal because, in any Java program, the text 
“An int variable” stands for the same three words.

In Java, single quotation marks stand for a character. You can change the 
second declaration in Listing 6-1 this way:

char aCharacter = ‘J’;

With this change, the program’s run doesn’t change. The dialog box shown in 
Figure 6-3 still contains the letter J.

 In Java, a char value is a number in disguise. In Listing 6-1, you get the same 
result if the second type declaration is char aCharacter = ‘J’. You  
can even do arithmetic with char values. For example, in Listing 6-1, if you 
change the second declaration to char aCharacter = ‘J’ + 2, you get 
the letter L.



144 Part II: Writing Your Own Java Programs 

The 01000001 01000010 01000011s
What does 01001010 have to do with the number 
74 or with the letter J?

The answer for 74 involves the binary number 
representation. The familiar base-10 (decimal) 
system has a 1s column, a 10s column, a 100s 
column, a 1000s column, and so on. But the 
base-2 (binary) system has a 1s column, a 2s 
column, a 4s column, an 8s column, and so on. 
The figure shows how you get 74 from 01001010 
using the binary column values.

The connection between 01001010 and the 
letter J might seem more arbitrary. In the 
early 1960s, a group of professionals devised 
the American Standard Code for Information 
Interchange (ASCII). In the ASCII representa-
tion, each character takes up 8 bits. You can 
see the representations for some of the charac-
ters in the sidebar table. For example, our friend 
01001010 (which, as a binary number, stands 
for 74) is also the way the computer stores the 
letter J. The decision to make A be 01000001 
and to make J be 01001010 has roots in the 
20th century’s typographic hardware. (The site 
www.wps.com/J/codes has some nice tid-
bits about all this.)

In the late 1980s, as modern communications 
led to increasing globalization, a group of 

experts began work on an enhanced code with 
up to 32 bits for each character. The lower eight 
Unicode bits have the same meanings as in the 
ASCII code, but with so many more bits, the 
Unicode standard has room for languages other 
than English. A Java char value is a 16-bit 
Unicode number, which means that, depending 
on the way you interpret it, a char is either a 
number between 0 and 65535 or a character in 
one of the many Unicode languages.

In fact, you can use non-English characters 
for identifiers in a Java program. In the figure, 
I use Eclipse to run a program with identifiers 
and output in Yiddish. The words in a few of the 
statements are out of order because I mix left-
to-right and right-to-left languages. But other-
wise, the stuff in the figure is a plain-old Java 
program!

http://www.wps.com/J/codes


145 Chapter 6: Java’s Building Blocks

Bits When 
Interpreted 
As an int

When 
Interpreted 
As a char

Bits When 
Interpreted 
As an int

When 
Interpreted 
As a char

00100000 32 space 00111111 63 ?
00100001 33 ! 01000000 64 @
00100010 34 “ 01000001 65 A
00100011 35 # 01000010 66 B
00100100 36 $ 01000011 67 C
00100101 37 % . . .
00100110 38 & . . .
00100111 39 ‘ etc. etc. etc.
00101000 40 ( 01011000 88 X
00101001 41 ) 01011001 89 Y
00101010 42 * 01011010 90 Z
00101011 43 + 01011011 91 [
00101100 44 , 01011100 92 \
00101101 45 - 01011101 93 ]
00101110 46 . 01011110 94 ^
00101111 47 / 01011111 95 _
00110000 48 0 01100000 96 `
00110001 49 1 01100001 97 a
00110010 50 2 01100010 98 b
00110011 51 3 01100011 99 c
00110100 52 4 . . .
00110101 53 5 . . .
00110110 54 6 etc. etc. etc.
00110111 55 7 01111000 120 x
00111000 56 8 01111001 121 y
00111001 57 9 01111010 122 z
00111010 58 : 01111011 123 {
00111011 59 ; 01111100 124 |
00111100 60 < 01111101 125 }
00111101 61 = 01111110 126 ~
00111110 62 > 01111111 127 delete



146 Part II: Writing Your Own Java Programs 

How to string characters together
In Java, a single character isn’t the same as a string of characters. Compare 
the character ‘J’ with the string “An int variable” in Listing 6-1. A  
character literal has single quotation marks; a string literal has double  
quotation marks.

In Java, a string of characters may contain more than one character, but a 
string of characters doesn’t necessarily contain more than one character. 
(Surprise!) You can write

char aCharacter = ‘J’;

because a character literal has single quotation marks. And because String 
is one of Java’s types, you can also write

String myFirstName = “Barry”;

initializing the String variable myFirstName with the String literal 
“Barry”. Even though “A” contains only one letter, you can write

String myMiddleInitial = “A”;

because “A”, with its double quotation marks, is a String literal.

But in Java, a single character isn’t the same as a one-character string, so you 
can’t write

//Don’t do this:
char theLastLetter = “Z”;

Even though it contains only one character, the expression “Z” is a String 
value, so you can’t initialize a char variable with the expression “Z”.

Java’s primitive types
Java has two kinds of types: primitive and reference. Primitive types are the 
atoms — the basic building blocks. In contrast, reference types are the things 
you create by combining primitive types (and by combining other reference 
types).

 This chapter covers (almost exclusively) Java’s primitive types. Chapter 9 
introduces Java’s reference types.



147 Chapter 6: Java’s Building Blocks

 Throughout this chapter, I give some attention to Java’s String type. The 
String type in reality belongs in Chapter 9 because Java’s String type is a 
reference type, not a primitive type. But I can’t wait until Chapter 9 to use 
strings of characters in my examples. So consider this chapter’s String  
material to be an informal (but useful) preview of Java’s String type.

Table 6-1 describes all eight primitive Java types.

Table 6-1 Java’s Primitive Types
Type Name What a Literal Looks Like Range of Values
Integral types
byte (byte)42 –128 to 127
short (short)42 –32768 to 32767
int 42 –2147483648 to 2147483647
long 42L –9223372036854775808 to 

9223372036854775807
Character type (which is, technically, an Integral type)
char ‘A’ Thousands of characters, glyphs, 

and symbols
Floating-point types
float 42.0F –3.4 × 1038 to 3.4 × 1038

double 42.0 or

0.314159e1

–1.8 × 10308 to 1.8 × 10308

Logical type
boolean true true, false

You can divide Java’s primitive types into three categories:

 ✓ Integral

  The integral types represent whole numbers — numbers with no digits 
to the right of the decimal point. For example, the number 42 in a Java 
program represents the int value 42, as in 42 cents or 42 clowns or 42 
eggs. A family can’t possibly have 2.5 children, so an int variable is a 
good place to store the number of kids in a particular family.

  The thing that distinguishes one integral type from another is the range 
of values you can represent with each type. For example, a variable of 
type int represents a number from –2147483648 to +2147483647.



148 Part II: Writing Your Own Java Programs 

  When you need a number with no digits to the right of the decimal point, 
you can almost always use the int type. Java’s byte, short, and long 
types are reserved for special range needs (and for finicky programmers).

 ✓ Floating-point

  The floating-point types represent numbers with digits to the right of 
the decimal point, even if those digits are all zeros. For example, an old 
wooden measuring stick might be 1.001 meters long, and a very precise 
measuring stick might be 1.000 meters long.

  The thing that distinguishes the two floating-point types (double and 
float) from one another is the range of values you can represent with 
the types. The double type has a much larger range and is much more 
accurate.

  In spite of their names, Java programmers almost always use double 
rather than float, and when you write an ordinary literal (such as 
42.0), that literal is a double value. (On the off chance that you want to 
create a float value, write 42.0F.)

 ✓ Logical

  A boolean variable has one of two values: true or false. You can 
assign 74 to an int variable, and you can assign true (for example) to a 
boolean variable:
int numberOfPopsicles;
boolean areLemonFlavored;
numberOfPopsicles = 22;
areLemonFlavored = true;

  You can do arithmetic with numeric values, and you can do a kind of 
“arithmetic” with boolean values. For more information, see the next 
section.

Things You Can Do with Types
You can do arithmetic with Java’s operators. The most commonly used  
arithmetic operators are + (addition), – (subtraction), * (multiplication), / 
(division), and % (remainder upon division).

 ✓ When you use an arithmetic operator to combine two int values, the 
result is another int value.

  For example, the value of 4 + 15 is 19. The value of 14 / 5 is 2 
(because 5 “goes into” 14 two times, and even though the remainder 
is bigger than 1⁄2, the remainder is omitted). The value of 14 % 5 is 4 
(because 14 divided by 5 leaves a remainder of 4).



149 Chapter 6: Java’s Building Blocks

  The same kinds of rules apply to the other integral types. For example, 
when you add a long value to a long value, you get another long 
value.

 ✓ When you use an arithmetic operator to combine two double values, 
the result is another double value.

  For example, the value of 4.0 + 15.0 is 19.0. The value of 14.0 / 5.0 
is 2.8.

  The same kind of rule applies to float values. For example, a float 
value plus a float value is another float value.

 ✓ When you use an arithmetic operator to combine an int value with a 
double value, the result is another double value.

  Java widens the int value in order to combine it with the double value. 
For example, 4 + 15.0 is the same as 4.0 + 15.0, which is 19.0. And 
14 / 5.0 is the same as 14.0 / 5.0, which is 2.8.

  This widening also happens when you combine two different kinds of 
integral values or two different kinds of floating-point values. For example, 
the number 9000000000000000000 is too large to be an int value, so
9000000000000000000L + 1

  is the same as
9000000000000000000L + 1L

  which is
9000000000000000001L

Two other popular operators are increment ++ and decrement --. The most 
common use of the increment and decrement operators looks like this:

x++;
y--;

But you can also place the operators before the variables:

++x;
--y;

Placing the operator after the variable is called postincrementing (or  
postdecrementing). Placing the operator before the variable is called  
preincrementing (or predecrementing).

Both forms (before and after the variable) have the same effect on the  
variable’s value; namely, the increment ++ operator always adds 1 to the 
value, and the decrement -- operator always subtracts 1 from the value. The 
only difference is what happens if you dare to display (or otherwise examine) 
the value of something like x++. Figure 6-4 illustrates this unsettling idea.



150 Part II: Writing Your Own Java Programs 

 

Figure 6-4: 
Preincrement 

and post-
increment.

 

 In practice, if you remember only that x++ adds 1 to the value of x, you’re  
usually okay.

 The curious behavior shown in Figure 6-4 was inspired by assembly languages 
of the 1970s. These languages have instructions that perform increment and 
decrement operations on a processor’s internal registers.

Add letters to numbers (Huh?)
You can add strings and char values to other elements and to each other. 
Listing 6-2 has some examples.

Listing 6-2: Java’s Versatile Plus Sign
package com.allmycode.demos;

public class PlusSignTest {

  public static void main(String[] args) {
    int x = 74;
    System.out.println(“Hello, “ + “world!”);
    System.out.println
      (“The value of x is “ + x + “.”);
    System.out.println



151 Chapter 6: Java’s Building Blocks

      (“The second letter of the alphabet is “ +
                                       ‘B’ + “.”);
    System.out.println
      (“The fifth prime number is “ + 11 + ‘.’);
    System.out.println
      (“The sum of 18 and 21 is “ + 18 + 21 +
                         “. Oops! That’s wrong.”);
    System.out.println
      (“The sum of 18 and 21 is “ + (18 + 21) +
                              “. That’s better.”);

  }

}

 The String type more appropriately belongs in Chapter 9 because Java’s 
String type isn’t a primitive type. Even so, I start covering the String type 
in this chapter.

When you run the code in Listing 6-2, you see the output shown in Figure 6-5.

 

Figure 6-5: 
A run of 

the code in 
Listing 6-2.

 

Here’s what’s happening in Figure 6-5:

 ✓ When you use the plus sign to combine two strings, it stands for string 
concatenation.

  String concatenation is a fancy name for what happens when you  
display one string immediately after another. In Listing 6-2, the act of 
concatenating “Hello, “ and “world!” yields the string
“Hello, world!”

 ✓ When you add a string to a number, Java turns the number into a 
string and concatenates the strings. 

  In Listing 6-2, the x variable is initialized to 74. The code displays “The 
value of x is “ + x (a string plus an int variable). When adding 
the string “The value of x is “ to the number 74, Java turns the 
int 74 into the string “74”. So “The value of x is “ + x becomes 
“The value of x is “ + “74”, which (after string concatenation) 
becomes “The value of x is 74”.



152 Part II: Writing Your Own Java Programs 

  This automatic conversion of a number into a string is handy whenever 
you want to display a brief explanation along with a numeric value.

  The computer’s internal representation of the number 74 is 0000000000
0000000000000001001010 (with 1 in the 64s place, 1 in the 8s place, and 
1 in the 2s place). In contrast, the computer’s internal representation of 
the string “74” is 00000000001101110000000000110100. (For some clues 
to help you understand why these bits represent the “74” string, see 
the table accompanying this chapter’s earlier sidebar “The 01000001 
01000010 01000011s.”) The bottom line, as far as Java is concerned, is 
that the number 74 and the string “74” aren’t the same.

 ✓ When you add a string to any other kind of value, Java turns the other 
value into a string and concatenates the strings.

  The third System.out.println call in Listing 6-2 adds the char value 
‘B’ to a string. The result, as you can see in Figure 6-5, is a string  
containing the letter B.

 ✓ The order in which the computer performs operations can affect the 
outcome.

  The last two System.out.println calls in Listing 6-2 illustrate this 
point. In the next-to-last call, the computer works from left to right. The 
computer starts by combining “The sum of 18 and 21 is “ with 
18, getting “The sum of 18 and 21 is 18”. Then, working its way 
rightward, the computer combines “The sum of 18 and 21 is 
18” with 21 getting the screwy string “The sum of 18 and 21 is 
1821”.

  In the last System.out.println call, I fix these problems by grouping 
18 and 21 in parentheses. As a result, the computer starts by adding 18 
and 21 to get 39. Then the computer combines “The sum of 18 and 
21 is “ with 39, getting the more sensible string “The sum of 18 
and 21 is 39”.

Java’s exotic assignment operators
In a Java program, you can add 2 to a variable with a statement like this:

numberOfCows = numberOfCows + 2;

But to a seasoned Java developer, a statement of this kind is horribly gauche. 
You might as well wear white after Labor Day or talk seriously about a  
“nucular” reactor. Why?



153 Chapter 6: Java’s Building Blocks

Because Java has a fancy compound assignment operator that performs the 
same task in a more concise way. The statement

numberOfCows += 2;

adds 2 to numberOfCows and lets you easily recognize the programmer’s 
intention. For a silly example, imagine having several similarly named vari-
ables in the same program:

int numberOfCows;
int numberOfCrows;
int numberOfCries;
int numberOfCrays;
int numberOfGrays;

Then the statement

numberOfCrows += 2;

doesn’t force you to check both sides of an assignment. Instead, the +=  
operator makes the statement’s intent crystal-clear.

Java’s other compound assignment operators include -=, *=, /=, %=, and 
others. For example, to multiply numberOfCows by numberOfDays, you can 
write

numberOfCows *= numberOfDays;

 A compound assignment, like numberOfCrows += 2, might take a tiny bit 
less time to execute than the cruder numberOfCows = numberOfCows + 2. 
But the main reason for using a compound assignment statement is to make 
the program easier for other developers to read and understand. The savings 
in computing time, if any, is usually minimal.

True bit
A boolean value is either true or false. Those are only two possible 
values, compared with the thousands of values an int variable can have.  
But these two values are quite powerful. (When someone says “You’ve won 
the lottery” or “Your shoe is untied,” you probably care whether these  
statements are true or false. Don’t you?)



154 Part II: Writing Your Own Java Programs 

When you compare things with one another, the result is a boolean value. 
For example, the statement

System.out.println(3 > 2);

puts the word true in Eclipse’s Console view. In addition to Java’s > (greater 
than) operator, you can compare values with < (less than), >= (greater than 
or equal), and <= (less than or equal).

You can also use a double-equal sign (==) to find out whether two values are 
equal to one another. The statement

System.out.println(15 == 9 + 9);

puts the word false in the Console view. You can also test for inequality. 
For example, the statement

System.out.println(15 != 9 + 9);

System.out.println(15 != 9 + 9);

puts the word true in the Console view. (A computer keyboard has no ≠ 
sign. To help you remember the != operator, think of the exclamation point as 
a work-around for making a slash through the equal sign.)

An expression whose value is either true or false is a condition. In this 
 section, expressions such as 3 > 2 and 15 != 9 + 9 are examples of 
 conditions.

 The symbol to compare for equality isn’t the same as the symbol that’s used 
in an assignment or an initialization. Assignment or initialization uses a single 
equal sign (=), and comparison for equality uses a double equal sign (==). 
Everybody mistakenly uses the single equal sign to compare for equality sev-
eral times in their programming careers. The trick is not to avoid making the 
mistake; the trick is to catch the mistake whenever you make it.

 It’s nice to display the word true or false in Eclipse’s Console view, but 
boolean values aren’t just for pretty displays. To find out how boolean 
values can control the sequence of steps in your program, see Chapter 8.

Java isn’t like a game of horseshoes
Even when you correctly use the double equal sign, you have to be careful. 
Figure 6-6 shows you what happens in a paper-and-pencil calculation to con-
vert 21 degrees Celsius to Fahrenheit. You get exactly 69.8.



155 Chapter 6: Java’s Building Blocks

 

Figure 6-6: 
An exact 

Celsius-to-
Fahrenheit 

conversion.
 

But when you add the following statement to a Java program, you see false, 
not true:

System.out.println(9.0 / 5.0 * 21 + 32.0 == 69.8);

Why isn’t 9.0 / 5.0 * 21 + 32.0 the same as 69.8? The answer is that 
Java’s arithmetic operators don’t use the decimal system — they use the 
binary system. And in binary arithmetic, things don’t go as well as they do in 
Figure 6-6.

Figure 6-7 shows you how the computer divides 189.0 by 5. You might not 
understand (and you might not want to understand) how the computer com-
putes the value 100101.110011001100110011 . . ., but when you stop after 64 
bits or so, this answer isn’t exactly 37.8. It’s more like 37.800000000000004, 
which is slightly inaccurate. In a Java program, when you ask whether 9.0 / 
5.0 * 21 + 32.0 is exactly equal to 69.8, the computer says “No, that’s 
false.”

 Avoid comparing double values or float values for equality (using ==) or 
for inequality (using !=). Comparing strings for equality (as in the expression 
“passw0rd” == “passw0rd”) is also unadvisable.

 For details about comparing strings, see Chapter 8.

 

Figure 6-7: 
A division 

problem that 
never ends.

 



156 Part II: Writing Your Own Java Programs 

Use Java’s logical operators
Real-life situations might involve long chains of conditions. Here’s an example 
I found in a letter from the U.S. Department of Education federal student 
loans department:

Interest starts to accrue daily prior to repayment on all unsubsidized loans 
beginning on the first disbursement date and on all unsubsidized loans first 
disbursed on or after July 1, 2012 and before July 1, 2014 at the beginning of 
the grace period*. . . .

*Grace Period — A 6-month period before the first payment on a subsidized 
or unsubsidized Stafford Loan is due. The grace period begins the day after 
the student graduates, leaves school, or drops below half-time status and 
ends the day before the repayment period begins.

Whew! I’m glad I didn’t miss any of the fine print!

The good news is that an app’s conditions can be expressed using Java’s &&, 
|| and ! operators. The story begins in Listing 6-3. Here, the listing’s code 
computes the price for a movie theater ticket.

Listing 6-3: Pay the Regular Ticket Price?
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class Regular {

  public static void main(String[] args) {
    String ageString;
    int age;
    boolean chargeRegularPrice;

    ageString = JOptionPane.showInputDialog(“Age?”);
    age = Integer.parseInt(ageString);
    chargeRegularPrice = 18 <= age && age < 65;
    JOptionPane.showMessageDialog(null,
        chargeRegularPrice, “Regular price?”,
        JOptionPane.INFORMATION_MESSAGE);
  }

}

Figure 6-8 shows a run of the code in Listing 6-3 with the value of age set to 
17; Figure 6-9 shows a run with age set to 18.



157 Chapter 6: Java’s Building Blocks

 

Figure 6-8: 
A youngster 
goes to the 

movies.
 

 

Figure 6-9:  
If you 

can drink 
alcohol in 
Moldova, 

you can pay 
full price at 

our theater!
 

 Figures 6-8 and 6-9 might look peculiar because I’ve chosen to display the 
words true and false instead of more user-friendly messages (such as 
Charge this bum the regular price!). I do better when I cover Java’s 
if statements in Chapter 8.

In Listing 6-3, the value of chargeRegularPrice is true or false depending 
on the outcome of the 18 <= age && age < 65 condition test. The && 
operator stands for a logical and combination, so 18 <= age && age < 65 
is true as long as age is greater than or equal to 18 and age is less than 65.

 To create a condition like 18 <= age && age < 65, you have to use the 
age variable twice. You can’t write 18 <= age < 65. Other people might 
understand what 18 <= age < 65 means, but Java doesn’t understand it.

 In the earlier section “Java isn’t like a game of horseshoes,” I warn against 
using the == operator to compare two double values with one another. If you 
absolutely must compare double values with one another, give yourself a 
little leeway. Rather than writing fahrTemp == 69.8, write something like 
this:

 (69.7779 < fahrTemp) && (fahrTemp < 69.8001)

Listing 6-3 has two other interesting new features. One feature is the use of 
JOptionPane.showInputDialog. This method displays a dialog box like 
the first box shown earlier, in Figure 6-8 (and the first box shown in Figure 6-9). 
The box has its own text field for the user’s input. Normally, the user types 



158 Part II: Writing Your Own Java Programs 

something in the text field and then presses OK. Whatever the user types in 
the text field becomes the value of the call to JOptionPane.showInput-
Dialog, as shown in Figure 6-10.

 

Figure 6-10: 
An entire 

method call 
has a value.

 

In Figure 6-10, notice that the entire method call JOptionPane.
showInputDialog(“Age?”) becomes synonymous with the string “17” 
(or with whatever the user types in the text field in the dialog box). So the 
statement

ageString = JOptionPane.showInputDialog(“Age?”);

effectively becomes the following statement:

ageString = “17”;

The showInputDialog method always returns a string of characters, so in 
Listing 6-3, it’s important that I declare appString to be of type String. 
The problem is that a string of characters isn’t the same as a number. You 
can’t use the < operator to compare “17” with “18”. Java doesn’t do  
arithmetic on strings of characters, even when those strings happen to look 
like numbers.

Before comparing the user’s input with the numbers 18 and 65, you have 
to turn the user’s input into a number. (You have to turn a string like “17” 
into an int value like 17.) To do that, you call Java’s Integer.parseInt 
method:

 ✓ The Integer.parseInt method’s parameter is a String value.

 ✓ The value of a call to the Integer.parseInt is an int value.

So, in Listing 6-3, the statement

age = Integer.parseInt(ageString); 

assigns an int value to the variable age. That’s good because, in the listing, 
age is declared to be of type int.



159 Chapter 6: Java’s Building Blocks

Listing 6-4 illustrates Java’s || operator. (In case you’re not sure, you type 
the || operator by pressing the | key twice.) The || operator stands for a 
logical or combination, so age < 18 || 65 <= age is true as long as age 
is less than 18 or age is greater than or equal to 65.

Listing 6-4: Pay the Discounted Ticket Price?
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class Discount {

  public static void main(String[] args) {
    String ageString;
    int age;
    boolean chargeDiscountPrice;

    ageString = JOptionPane.showInputDialog(“Age?”);
    age = Integer.parseInt(ageString);
    chargeDiscountPrice = age < 18 || 65 <= age;
    JOptionPane.showMessageDialog(null,
        chargeDiscountPrice, “Discount price?”,
        JOptionPane.INFORMATION_MESSAGE);
  }

}

Runs of the code from Listing 6-4 are shown in Figures 6-11 and 6-12.

 

Figure 6-11:  
Ah, to be 

young 
again!

 

 

Figure 6-12: 
Ah, to be old 

at last!
 

Listing 6-5 adds Java’s ! operator to the logical stew. If you’re unfamiliar  
with languages like Java, you have to stop thinking that the exclamation  
point means, “Yes, definitely.” Instead, Java’s ! operator means not. In  
Listing 6-5, with isSpecialShowing being true or false, the expression 



160 Part II: Writing Your Own Java Programs 

!isSpecialShowing stands for the opposite of isSpecialShowing. That 
is, when isSpecialShowing is true, !isSpecialShowing is false. And 
when isSpecialShowing is false, !isSpecialShowing is true.

Listing 6-5: What about Special Showings?
package com.allmycode.tickets;

import javax.swing.JOptionPane;

public class Discount2 {

  public static void main(String[] args) {
    String ageString;
    int age;
    boolean chargeDiscountPrice;
    String specialShowingString;
    boolean isSpecialShowing;

    ageString = JOptionPane.showInputDialog(“Age?”);
    age = Integer.parseInt(ageString);

    specialShowingString = JOptionPane.showInputDialog
        (“Special showing (true/false)?”);
    isSpecialShowing =
        Boolean.parseBoolean(specialShowingString);
    chargeDiscountPrice =
        (age < 18 || 65 <= age) && !isSpecialShowing;

    JOptionPane.showMessageDialog(null,
        chargeDiscountPrice, “Discount price?”,
        JOptionPane.INFORMATION_MESSAGE);
  }

}

Runs of the code from Listing 6-5 are shown in Figures 6-13 and 6-14.

The primary condition in Listing 6-5 grants the discount price to kids and to 
seniors as long as the current feature isn’t a “special showing” — one that the 
management considers to be a hot item, such as the first week of the run of 
a highly anticipated movie. When there’s a special showing, no one gets the 
discounted price.

In Figures 6-13 and 6-14, I artificially force the user to type the word true or 
the word false (without quotation marks) in an input text field. Figure 6-15 
shows how the user’s response becomes a string of characters that’s  
deposited into my specialShowingString variable.



161 Chapter 6: Java’s Building Blocks

 

Figure 6-13: 
A special 
price for 

a not-so-
special 

showing.
 

 

Figure 6-14: 
A special 
showing 

with a not-
so-special 

price.
 

In the next statement in Listing 6-5, the method Boolean.parseBoolean 
does for boolean values what Integer.parseInt does for int values.  
The Boolean.parseBoolean method turns the value of specialShowing 
String (the string “true” or “false”) into an honest-to-goodness  
boolean value. To this boolean value, the computer can apply the !  
operator and, if needed, the && and || operators.



162 Part II: Writing Your Own Java Programs 

 

Figure 6-15: 
Getting the 

word true 
from the 

user’s input.
 

 For any condition you want to express, you always have several ways to 
express it. For example, rather than test numberOfCats != 3, you can be 
more long-winded and test !(numberOfCats == 3). Rather than test myAge 
< yourAge, you can get the same answer by testing yourAge > myAge or 
!(myAge >= yourAge). Rather than type a != b && c != d, you can 
get the same result with !(a == b || c == d). (A guy named Augustus 
DeMorgan told me about this last trick.)

Parenthetically speaking . . .
The big condition in Listing 6-5 (the condition (age < 18 || 65 <= age) 
&& !isSpecialShowing) illustrates the need for (and the importance of) 
parentheses (but only when parentheses are needed (or when they help 
people understand your code)).

When you don’t use parentheses, Java’s precedence rules settle arguments 
about the meaning of the expression. They tell you whether the line

age < 18 || 65 <= age && !isSpecialShowing

stands for the expression

(age < 18 || 65 <= age) && !isSpecialShowing

or for this one:

age < 18 || (65 <= age && !isSpecialShowing)

According to the precedence rules, in the absence of parentheses, the  
computer evaluates && before evaluating ||. If you omit the parentheses, the 
computer first checks to find out whether 65 <= age && !isSpecial 
Showing. Then the computer combines the result with a test of the age < 
18 condition. Imagine a 16-year-old kid buying a movie ticket on the day of 
a special showing. The condition 65 <= age && !isSpecialShowing is 



163 Chapter 6: Java’s Building Blocks

false, but the condition age < 18 is true. Because one of the two conditions 
on either side of the || operator is true, the whole nonparenthesized  
condition is true — and, to the theater management’s dismay, the 16-year-
old kid gets a discount ticket.

Sometimes, you can take advantage of Java’s precedence rules and omit the 
parentheses in an expression. But I have a problem: I don’t like memorizing 
precedence rules, and when I visit Java’s online language specifications  
document (docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.
html), I don’t like figuring out how the rules apply to a particular condition.

When I create an expression like the one in Listing 6-5, I almost always use 
parentheses. In general, I use parentheses if I have any doubt about the way 
the computer behaves without them. I also add parentheses when doing so 
makes the code easier to read.

Sometimes, if I’m not sure about stuff and I’m in a curious frame of mind, I 
write a quick Java program to test the precedence rules. For example, I run 
Listing 6-5 with and without the condition’s parentheses. I send a 16-year-old 
kid to the movie theater when there’s a special showing and see whether 
the kid ever gets a discount ticket. This little experiment shows me that the 
parentheses aren’t optional.

http://www.docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.html
http://www.docs.oracle.com/javase/specs/jls/se5.0/html/j3TOC.html


164 Part II: Writing Your Own Java Programs 


